Corpus databases with feature pre-calculation

Erwin R. Komen

Radboud University Nijmegen // SIL-International
E-mail: E.Komen@Let.ru.nl

Abstract

Reliably coded treebanks are a goldmine for linguistics research. Answering a
typical research question involves: (a) querying a treebank to extract sentences
containing the feature to be investigated, (b) recognizing and keeping track of
characteristics that determine the way in which the linguistic feature is encoded, and
(c) using statistics to find out which (combination) of these characteristics
determines the outcome of the linguistic feature. While sufficient tools are available
for steps (a) and (c) in this process, step (b) has not received much attention yet.
This paper describes how the programs “Cesax” and “CorpusStudio” can be used
jointly to construct a “corpus research database”, a database that contains the
sentences of interest selected in step (a), as well as user-definable pre-calculated
characteristics for step (b).

1 Introduction

Research into variation and change of syntactic constructions often consists
of (1) automatically finding examples of the construction in a reliably coded
treebank, (2) adding characteristics (features) to each of the examples, (3)
gathering the results into a database, (4) manually editing the examples in the
database, and (5) preparing the list of examples and their features for further
statistical work with programs like “R” or “SPSS”. The programs “Cesax”
and “CorpusStudio” provide a windows-oriented relatively user-friendly way
of achieving these goals [7].!

CorpusStudio facilitates queries written in the Xquery language [1], taking
xml encoded treebank texts as input.” The program allows each “hit” to be
accompanied by a user-definable number of features, and these features can
be programmatically calculated, predicted, or given a default value. The
results of a query project (which may involve multiple cascaded queries),
together with the calculated features, can be saved as an xml database. The
Cesax program is equipped with a feature to load such databases and contains
an editor to work with the examples and their features. Cesax automatically
adds a “Notes” field and a “Status” field to each database entry, allowing the
user to annotate the database and to keep track of progress made. The
database entries come with a predefined preceding and following context, as
well as with the treebank syntax. Double-clicking an entry results in jumping

! CorpusStudio and Cesax are freely available from http://erwinkomen.ruhosting.nl.

2 The xml format CorpusStudio deals with best is a TEI-P5 derivative using embedded
hierarchy [11]. Labelled bracketing treebank files can be imported and transformed into this
format using Cesax. CorpusStudio also allows working directly with the Negra and the Alpino
formats, but the database features are not (yet) available for them. Future plans include
conversion options for these formats.

http://erwinkomen.ruhosting.nl/

to the actual location in the corpus file, which helps quickly looking for the
larger context when this is needed (it is this simple feature that is perhaps
most valued by the users). Cesax also allows exporting the database for use in
statistics.

This paper provides a walk through the process described above, and it
does so by taking the “progressive inversion” as an example.

2 The progressive inversion

The progressive inversion construction is a subtype of VP inversion [12]. It is
similar to the locative inversion, except that the first constituent is a participle
clause instead of a prepositional phrase, as for example (1a):

(1) a. [ippe. Trending away on either side of the port] was [yp-sg; @ bold
rocky coast, varied here and there with shingly and sandy beaches].
[fayrer-1900:54]
b. ?[s»j A bold rocky coast] was trending away on either side of the port.

The uninverted variant of (1a) would be (1b), but the question mark indicates
that this is not quite okay for native speakers. The linguistic question | would
like to posit for the sake of this walk-through is: “Which features could
determine the appearance of a progressive inversion?”’

3 Automatically finding examples

Having defined the research question, step (1) in the process of answering it
(see Introduction) is to define a query that automatically locates the necessary
examples of the linguistic feature that is being targeted. Sentences that
contain a progressive inversion need to have the following three elements:

1) Subject
2) Finite verb
3) Participle

Once sentences containing these three elements are located, the order of these
elements will show whether an inversion construction is being used
(participle-finite verb-subject) or some other construction (such as: subject-
finite verb-participle). The task of locating sentences and determining
whether they contain a progressive inversion or not can be accomplished in
CorpusStudio by using the Xquery code in (2).2

What the code does is: select main clauses into variable $search (line 2),
put the subject of the main clause into sspj (line 5), put the finite verb of the
main clause into sv£in (line 8), any participle of the main clause is put into
sptep (line 11), determine the word order (line 14,15), return this clause if all
the elements are there (line 18-23). The result of running the Xquery code (2)
consists of all the sentences containing the required elements for the

% The code makes use of standard Xquery functionality (for-let-where-return, if-
then-else, the function “exists () ”), some built-in Xquery functions (“ru:matches”,
“ru:relates”, “ru:back”), user-defined functions that are elsewhere in the code
(“tb:SomeChildNo”, “tb:SomeChild”), and user-defined global variables
(“S_matrixIP”,“S subject”).

progressive inversion (subject, finite verb, participle), and these sentences are
divided over the word orders ‘Ptcp-Vfin-S” and ‘Other’.

(2 Xquery code to find the inversion examples
1.

(: Look in all main clauses :)

2. for $search in //eTree[ru:matches (@Label, $ matrixIP)]
3.
4. (: There must be a subject and a finite verb :)
5. let $sbj := tb:SomeChildNo ($search, $ subject, $ nosubject)
6. let $vfin := tb:SomeChild($search, $ finiteverb)
7.
8. (: There must be a progressive or ptcp, but not an absolute :)
9. let $ptcp := tb:SomeChildNo ($search,
'IP-PPL*| [VB]AG* |PTP*', '*ABS*')
10.
11. (: Find out word order :)
12. let $order := if (($vfin << $sbj) and ($ptcp << $vfin))
13. then 'Ptcp-Vfin-S' else 'Other'
14.
15. (: Check conditions: subject, V-fin, progressive, word order :)
16. where (exists($sbj)
17. and exists ($vfin)
18. and exists ($ptcp))
19.
20. (: Return the main clause, subcategorize on word order :)

21. return ru:back($search, , Sorder)

While the Xquery code in (2) serves its purpose well, a few extensions are
required that will show up later in the code. Two particular main clause types
need to be excluded, since they skew the data: the quotations (oTp clauses)
and main clauses with left dislocations (those with an Lrp element); the
algorithm should only look for non-empty subjects.

4 Adding features to the results

Step (2) in the process of addressing the linguistic question at hand (see
Introduction) is to add characteristics, or ‘features’, to each of the examples
we find. One way to do this in Xquery is to make a user-defined function.
This function, which will receive the name tb:pProgrinv (), is called in line
23 of the extended version of the main query (3). The main query is also
extended with a test for the exclusion of left-dislocated and quotative main
clause type in lines 5-6 and 26, while lines 10 and 27 make sure that empty
subjects (such as traces and dislocation markers) are excluded from
consideration.

3 Add features to the progressive inversion

1 (: Look in all main clauses :)

2 for $search in //eTree[ru:matches (@Label, $ matrixIP)]

3.

4. (: Some clauses need to be excluded :)

5 let $elsOk := not (exists ($search/child::eTree

6 [ru:matches (@Label, 'QTP*|*LFD*')]))
7

8. (: There must be a subject :)

9. let $sbj := tb:SomeChildNo ($search, $ subject, $ nosubject)
10. let $sbjOk := not(exists($sbj[child::elLeaf/@Type = 'Star']))
11.

12. (: There must be a finite verb :)

13. let $vfin := tb:SomeChild($search, $ finiteverb)

14.

15. (: There must be a progressive or ptcp, but not an absolute :)
16. let $ptcp := tb:SomeChildNo ($search,

17. 'IP-PPL* |VAG* |BAG* |PTP*', '"*ABS*')
18.

19. (: Prepare subcategorization: ptcp type :)

20. let $cat := ru:cat ($ptcp, 'phrase')

21

22. (: Combine features into a CSV for database creation :)

23. let $db := tb:ProgrInv($sbj, $vfin, $ptcp)

24

25. (: Check conditions: sbj, Vfin, progressive and word order :)
26. where ($eclsOk

27. and exists ($sbj) and $sbjoOk

28. and exists ($vfin)

29. and exists ($ptcp)

30.)

31

32. (: Return clauses found, subcategorize on the word order :)

33. return ru:back($search, $db, $cat)

The function tb:pProgrinv () is defined in such a way, that it returns a string
array of the features. These features are subsequently passed on to the
CorpusStudio engine through the saw variable as an argument of the built-in
ru:back () function, where they will be available for the next step in the
process.

Turning now to the feature calculation, there are two kinds of features the
database should be equipped with: those that are going to be used for
statistics (such as the kind of verb used, the size of the subject), and those that
are important for visual inspection by the database user (such as the text of
the subject, finite verb and participle). The code for the tb:Progrinv()
function where the features are calculated is provided in (4).

(@) Xquery code that calculates the feature values for one example
o

1 __
2 Name : tb:ProgrlInv

3 Goal : Provide features for the progressive inversion database
4. History:

5. 13-06-2013 ERK Created

6. T)
7 declare function tb:ProgrInv (

8 $sbj as node()?, $vfin as node()?, S$ptcp as node()?)as xs:string
9. {

10. (:

11. Feature calculation starts here

12.)
13. (: Feature #1-3: the text of the ptcp, V-finite and subject :)
14. let $ptcpText := replace (tb:Sentence ($ptcp), ';', ' ')

15. let $vfinText := replace (tb:Sentence($vfin), ';', ' ')

16. let $sbjText := replace(tb:Sentence($sbj), ';', ' ")

17.

18. (: Feature #4: word order -- Ptcp-Vfin-S, or other? :)

19. let $order := if (($vfin << $sbj) and ($ptcp << $vfin))

20. then 'Ptcp-Vfin-S' else 'Other'

21.

22. (: Feature #6: the type of participle :)

23. let $ptcpType := if (ru:matches ($ptcp/@Label,

24 . 'IP-PPL* |VAG* |BAG* |PTP*')) then 'Present' else 'Past'
25.

26. (: Feature #7: the number of constituents after V-finite :)

27. let $postVf := count ($vfin/following-sibling::eTree]|

28. not (ru:matches (@Label, $ ignore nodes conj))])
29.

30. (: Feature #8: the number of words in the subject :)

31. let $sbjSize := count($sbj/descendant::eleaf[@Type = 'Vern'])
32.

33. (: Feature #9: NPtype of the subject :)

34. let $sbjType := ru:feature($sbj, 'NPtype')

35.

36. (: Feature #10: estimate of referentiality of the subject :)

37. let $sbjRef := ru:RefState($sbj)

38.

39. (:

40. Combine features into a CSV for database creation

41.)
42. return concat ($ptcpText, ';',

43, SvfinText, ';', S$sbiText, ';',

44 ., Sorder, ';', Sptcp/@Label, ';',

45. SptcpType, ';', SpostVvEt, ';',

46. $sbjsize, ';', $sbjType, ';',

47. $sbijRef)

48. } ;

As far as the features necessary for visual inspection, the function
tb:ProgrInv () calculates the text of the participle (line 15), the text of the
finite verb (line 18) and the text of the subject (line 21).

Statistically important is the dependent variable sorder as calculated in
lines 24-25: this feature either has the value “Ptcp-Vfin-S”, in which case the
example is a progressive inversion, or it has the value “Other”, in which case
the example is not an inversion. The features numbered 5-10 in the Xquery
code (4) are independent variables that could all possibly influence the word
order, and they are summarized in Table 1.

Feature Explanation

5 PtcplLabel syntactic label of the participle (VAG, IP-PPL etc)
6 PtcpTense progressive is ‘Present’ or ‘Past’ tense”

7 PostVFNum number of sibling-constituents following Vit

8 SbhjSize number of words in the subject

9 ShjType NPtype of the subject

10 SbhjRef Estimate for subject’s referential status

Table 1 Features that represent independent variables in a statistic analysis

The features numbered 5-8 are ‘fixed’ in the sense that they are calculated
automatically and do not need manual correction. This is not the case for
features 9 (SbjType) and 10 (ShjRef). These features are estimated
automatically, but they may need manual correction.

The “SbjType” feature, for instance, makes use of the “NPtype” feature
that has been added to the original Treebank texts. But this feature has not
been determined for some of the Noun Phrases, which are distinguishable by
having the feature value “unknown”.

The “SbjRef” feature makes use of the built-in CorpusStudio function
“ru:Refstate”, Which has a success rate of approximately 85% in
determining the referentiality of an NP. The values of this feature all need to
be checked manually!®

5 Making a database

Next in the process of a full-fledged linguistic analysis as mentioned in the
introduction is step (3), making a database. It is to this end that the second
argument of the “ru:back” function has been filled with a semicolon-
separated list of feature values. When the queries have been run on the input
texts within the CorpusStudio program, an xml file that contains all the
important information on the result sentences is created, but this is not yet the
database. This correct part of this result file can be transformed into an xml
database by pressing a button within CorpusStudio, labelled “create result
database”.

Figure 1 provides a screenshot of the relevant part of CorpusStudio, called
the “ConstructorEditor”. This editor contains the queries that are to be
processed for the currently loaded corpus research project, and it defines their
hierarchical order. The CorpusStudio manual describes the process involved
in generating a database from the results of a query line in more detail [5].

% This feature is unnecessary for the current example, where we only look at present-tense
progressive inversion.

® The Xquery functions starting with the “ru:” prefix are all listed in the CorpusStudio
manual. These functions have been hard-coded in CorpusStudio and approach the xml
documents through the Microsoft xml library; the program makes use of the Saxon Xquery dll,
which, in turn, allows host-programs to provide additional Xquery functions through a
namespace declaration that points to the executable itself. The ru:Refstate function is
described more fully in [8].

[corpus st Il

File Edit View Constructor Tools Help D:\Data Files\Conferences\2013\SHES_2013\DatalPresFocING_¥3.crpx
General| Fies | Peiod Edtor | Defintions | Query Editor Constructor Editr | Hierarchy | Tree | Output Monitor | Output Files | Resuits | Viewer |

Constructor line: Query: Ima[P[cpP[s-\/f-S_fea[u[eg ;‘ Features for each Dbase result:
| 9C] Input | Query _— Iﬁ - |Flcpw'ovd@1 Miin@2;5ubject@3;0rder@4 PtcpLabel@5.PtepT ense@E
1 [Source | matPtopVF5_basic R couce 2% Heke e conlenertiie
2 | Source | matPtep S IV Show the DUTPUT of this query in a Resultine [~ Store output (and emp) of this fine: Create result database
3 |Source | matPtepPRS VS Resulttag: |matPtcpVf-S_features ™ Do notinclude examples Show result locations
4 . Goal: Find main clauses with Participle IP, finite verb and subject. Add fea\:uzles for database
processing
Comments:

Main clauses must contain in order:
1) Participle; in LmodE coded as IP-PPL
2) Finite verb
3) Subject (not empty)
Include checks for: (a) clause type, (b) empty subjects
|Add for ing:
1) The subject, written out
2) the finite verb, written out
3) The order: inverted or other
4) The participle form, written out
5) The @Label of the progressive/participle
6) The type of the participle (present/past)
7) The number of constituents occurring after the finite wverb
8) Subject: the mumber of words
9) Subject: the NPtype of the subject
10) Subject: its referentiality (estimate, 85% accurate)

Figure 1 Creating an xml database in the Constructor Editor of CorpusStudio

6 Editing examples in the database

Steps (1) to (3) involved in working through a linguistics example, as
described in the introduction, have been taken, and everything is ready for
step (4), manually editing and inspecting the database. Loading the database
in Cesax results in the following display.

& CESAX: Editor for syntactically annotated corpora E (=]
g ditor fi Il d [=]
Ele Edt Vew Secton Translation Reference Corpus Must Syntax ook Help
General| Editor | Syntak| Tiee | Transiaion | Fieport| Enors CorpusRiesuts | Refwalk |
Corpus research project. [PresFociNG_V3 Database file: [D:\Data Files\Conferences’\2013\SHES_2013\Data\PresFoclNG_V3 Dbaseml Created: [13/6/20131313.05
Addtional information: [Database of results created from queryiine: matPtp™Vi-S_features Analysis: [Ptepword Vi Order PtepLabel PicpT ense
Selected feature: Order ~ [D:\Data fes\C 7
(~ Select one result fiom the datab
Number: [7308 Text [southey-1813 Location:[181.145
Res!| Textld Cat | fores| Peri Select | Statusi <] Fie: [southey- 1813 psce
7890 | uskin1835 P [431 [B2 [Other
Peiod: [B2 Forestid: [145 elreeld: [4821 Categoy: [IP Status: [Done ~] :
7891 | ruskin-1835 1P |433 (B2 |Other L e e N HLefe
e B e =T T5s Toter stormy weather, should evade contributing to them =1 St | € Notes|
7893 | ruskin 1835 P 4% |B2 |Other in fair seasons and summer nights.[181.144] Of -
i : sially (TP-HAT
7894 | uskin 1835 1P [472 |B2 | Other lapeiyeas abot ton diotssild v essclaliid snimally (IP-PPL
7895 | ruskin 1635 P |43 |82 |Other paid this contribution in time of peace. P (IP-PPL (VAG Adjoining} (NP-OBL (NPR
[181.145] Adjoining Elsineur, and at the edge of a Elsineur))) (, ,} (CONJP (CONJ and) (PP
7836 | ruskin-1835 BAG 565 |B2 |Other peninsular promontory, upon the nearest point of (PP (P at) (NP (D the) (N edge) (PP (P
. y of) (NP (D a) (ADJ peninsular) (N
7897 | uskin1835 1P |571 |B2 |Other land to the Swedish coast, stands Cronenburg promontory)11)) 1, ,) (CONID (PP (B upom)
7898 | ruskin-1835 IP[591 |B2 |Other Castle, built after Tycho Brahe's design- a (NP (D the) (ADJS nearest) (N point) (PP
o . £ (P of) (NP (N land))) (PP (P to) (NP (D
7833 | uskin 1835 P |612 |B2 | Other mag"mc_““f’“e_'ha_‘°“°‘”p“1:“: a“dm“jessr and o) enel 1ADT swediam 05 cnmsriniiinin ¢ =
state picon suith its coiras aod towers an
7900 | uskin 1835 P [629 B2 |Other i Een ‘
7901 | muskin1835 1P |640 |B2 | Other PrepWord [Adicining Elsinevr . and at the edge of a peninsular promontory . upon the nearest point of land ta the Swedish ct
7902 southey1813 P |79 |B2 |Other Vin o
7903 southey1813 P |35 [B2 [Other) . - —
Subject [Cronenburg Castle, buil after Tycho Brahe"s desian - a magnificent pie - at once a palace , and fortress , and st
7904 | southey1813 P [107 |B2 |Other
7305 | southey-1813 P [124 (B2 |Other Wiz [Prepiins
7 outhey1813 Preplabel [ip-PPL
7907 | southey1813 P [158 B2 |Other | [none) PlcpTense [Present
7908 | southey1813 P [170 |B2 [Other Postvitun |1
7909 southey1813 P [176 |B2 |Other shisize &
7910 southey1813 P [181 [B2 |Other
SbiType [Proper
7911 | southey1813 P [133 B2 [Other
7912 | southey1813 P |200 [B2 |Other Sbiftef [NonFief
eTree [[] @from=176 @to=176 Section 1/1 _:;

Figure 2 Loading an xml database in Cesax

The Cesax program has originally been created to facilitate coreference
resolution and referential state processing, but it has been extended with
several more functions, one of which is the editing of databases. Once a
database has been loaded, editing options become available on the
“CorpusResults” tab page [6].

1) Delete. Individual records can be deleted, but it is also possible to keep
the records that are available, and indicate their status as “Ignore”.

2) Add. If important sentences have not been captured by the database
construction query, it is better to adapt the query in such a way that all
sentences are added.

3) Editing. Feature values can be edited in the textboxes available for each
record.

4) Notes. The “Notes” window allows adding remarks to individual records

5) Status. The status of each record can be set in order to keep track of
progress.

6) Bulk-changes. Two different methods are provided to provide a search
and replace feature. The most extensive option uses Xpath to find its way
through the results in the database xml file, but it uses a user-friendly
interface.

The database results can be re-ordered on the basis of any of the columns,
and one column can be filled with one of the user-supplied features. It is also
possible to filter the database without actually changing its content. These
kinds of features make life easier for the annotator, especially when databases
are large (the databases with results | have encountered typically exceed
10.000 sentences).

The syntax and local context of each record in the database are
immediately visible in the “CorpusResults” tab page, but it may, at times, be
necessary to look at the sentence that has been found in the larger context of
the original text. Cesax allows this: double clicking the entry in the results list
opens the corpus file on the corresponding place and shows it in the “Editor”
tab page. Should it be necessary to take a different look at the syntax of this
particular example, then clicking the “Tree” tab page results in displaying the
selected sentence in a syntactic tree.

7 Preparation for statistics

Step (5) in the process described in the introduction involved preparing the
database results for statistical processing. Cesax contains several commands
to suit the needs of the user. Preparation for SPSS processing, for instance,
involves the following steps:

1) Construct a table with the ‘original’ values of the features; the values as
they are visible in the CorpusResults tab page;

2) Construct a tab-separated text file where the ‘original’ feature values are
replaced by numerical values (an additional table with the ‘index’ to
these values is supplied separately);

3) Construct a separate .sps file (an SPSS ‘syntax’ file).

Work with SPSS can be conducted by transferring the second (humerical
value) table to SPSS, and processing the .sps file with the feature values. An
SPSS user will, in addition to this, also need to specify which features are to
be excluded from statistic, which are the independent variables, and which
one is the dependent variable.

Work with memory-based language programs like ‘TiMBL’ is also
supported [4]. Cesax allows preparing a training and test file with the
necessary features for further processing by TiMBL.

Since the purpose of this paper is to show how data gained through corpus
searches can be prepared for statistical processing, no attempt will be made to
figure out which of the independent variables play a role in determining
whether progressive inversion occurs or not.

8 Querying a database

Once a database has been manually edited, as described in section 6, a user
will probably not want to go back to adjusting the original corpus query
(section 3) in order to make a new version of a database (e.g. one that
contains a selected subset, or one with adjusted feature values). This may,
due to the cyclic process of research in general, not always be circumvented,
but the CorpusStudio-Cesax combination does allow for one way out. If a
user wants to make an adapted database that (a) uses a subset of the features
available in the original one, or (b) that has records filtered out by additional
criteria, or (c) that uses additional features that can be calculated on the basis
of the existing ones, then this can be achieved by writing a query with the
database as input. The CorpusStudio manual contains information on how to
do this.

Returning now to the linguistic task that has been undertaken as an
example, | would not like to withhold the outcome to the interested reader.
The manually inspected corpus database yields a total of twelve examples of
the progressive inversion (against a total of 5-6 million words), and the first
clear one is found in early Modern English (1500-1700).

(5) a. and vpon the ryght hande goynge from Rama to Jherusalem, about
XX. myle from Rama, is the castell of Emaus. [chaplain-e1-p2:289]

The example in (5) has the finite verb is preceded by a participle clause that
is headed by the present participle going. It clearly serves to introduce a new
‘participant’ in the narrative, namely the castle of ‘Emaus’.

9 Discussion

This paper has shown a new, windows-based approach to research into
variation and change of syntactic constructions. The new approach is
centered around the programs CorpusStudio and Cesax, and makes heavy use

of xml, xpath and xquery, which have become standard public-domain
conventions.

Just as CorpusSearch [9], tgrep [10], TigerSearch [3] and similar query
programs do, CorpusStudio allows for the definition of queries that select
sentences from syntactically parsed texts on the basis of user-definable
criteria. Just as the Alpino project [2, 13] does, CorpusStudio makes use of
the Xquery language with all its advantages in terms of user-extensibility,
recursive functions and independent W3C development. Different from its
competitors, however, CorpusStudio allows for combining multiple queries
into a corpus research project that is kept in one place, which facilitates
experiment replicability. Essential for the creation of a database with
examples is CorpusStudio’s capability to provide the examples that are found
with pre-calculated feature values. This capability surpasses, for instance,
CorpusSearch’s “coding” functionality; first in the area of user-friendliness,
and second in terms of complexity. Pre-calculating feature wvalues in
CorpusStudio is “advanced”, since it can make use of the Xquery
functionality of user-definable functions, and it can make use of the Xquery
functions that have been hard-wired into CorpusStudio.

Since databases that have been made with CorpusStudio contain features
that can have text values, editing such databases becomes a doable task.
When database entries are also supplied with notes, the data become a
valuable treasure, that allow back-tracking annotation choices. The facility to
jump to the location in the text associated with a database entry allows for
speedy inspection of the larger context, and it opens the way to a tree-view of
the selected sentence’s syntax.

Cesax allows simple transformation of a database into a format that can be
used by statistical programs such as “R” and “SPSS”, as well as by memory-
based learning programs such as “TiMBL”.

I suggest that future developments of Corpus databases based on
treebanks involve web interfaces instead of dedicated programs (which tend
to be OS-dependant), but | leave that challenge to the experts.

10 References

[1] Boag, Scott, Chamberlin, Don, Fernandez, Mary F., Florescu, Daniela,
Robie, Jonathan, and Siméon, Jérbme (2010) XQuery 1.0: An XML
Query Language (Second Edition) W3C Recommendation.

[2] Bouma, Gosse (2008) XML information extraction with Xquery:
processing wikipedia and Alpino trees. In Editor (ed.)"(eds.): ‘Book
XML information extraction with Xquery: processing wikipedia and
Alpino trees’ (Information science, university of Groningen, edn.), pp.

[3] Brants, Sabine, Dipper, Stefanie, Eisenberg, Peter, Hansen-Schirra,
Silvia, Konig, Esther, Lezius, Wolfgang, Rohrer, Christian, Smith,
George, and Uszkoreit, Hans (2004) TIGER: Linguistic Interpretation
of a German Corpus. Research on Language and Computation 2, (4),
597-620.

[4] Daelemans, Walter, and Bosch, Antal van den (2005) Memory-based
language processing (Cambridge University Press, 2005)

[5]
[6]

[7]

[8]
[9]
[10]
[11]

[12]

[13]

Komen, Erwin R. (2009) Corpus Studio manual. Nijmegen: Radboud
University Nijmegen.

Komen, Erwin R. (2011) Cesax: coreference editor for syntactically
annotated XML corpora. Reference manual. Nijmegen, Netherlands:
Radboud University Nijmegen.

Komen, Erwin R. (2012) Coreferenced corpora for information
structure research. In Tyrkko, Jukka, Kilpi6, Matti, Nevalainen, Terttu,
and Rissanen, Matti (eds.) Outposts of Historical Corpus Linguistics:
From the Helsinki Corpus to a Proliferation of Resources. (Studies in
Variation, Contacts and Change in English 10). Helsinki, Finland:
Research Unit for Variation, Contacts, and Change in English.

Komen, Erwin R. (2013) Predicting referential states using enriched
texts. In Editor (ed.)(eds.): ‘Book Predicting referential states using
enriched texts’ (edn.), pp.

Randall, Beth, Taylor, Ann, and Kroch, Anthony (2005)
http://corpussearch.sourceforge.net, accessed 2/Jun/2009

Rohde, Douglas L. T. (2005) TGrep2 user manual

Sperberg-McQueen, C.M., and Burnard, Lou (2009) TEI P5:
Guidelines for Electronic Text Encoding and Interchange (TEI
Consortium, 2009)

Ward, Gregory L., and Birner, Betty J. (1992) VP inversion and aspect
in written texts. In Stein, Dieter (ed.) Co-operating with written texts :
the pragmatics and comprehension of written texts, pp. 575-588.
Berlin; New York: Mouton de Gruyter.

Yao, Xuchen, and Bouma, Gosse (2010) Mining Discourse Treebanks
with XQuery. In Editor (ed.)“(eds.): ‘Book Mining Discourse
Treebanks with XQuery’ (edn.), pp. 245-256

http://corpussearch.sourceforge.net/

